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Characterization of the attractor governing the neon bulb RC relaxation oscillator

M. L. Petrani,! Ch. Karakotsou,? I. M. Kyprianidis,' and A. N. Anagnostopoulos?
'3rd Laboratory of Physics, Physics Department, University of Thessaloniki, Thessaloniki 54006, Greece
21st Laboratory of Physics, Physics Department, University of Thessaloniki, Thessaloniki 54006, Greece

(Received 24 May 1993; revised manuscript received 19 November 1993)

The sinusoidally driven neon bulb RC relaxation oscillator has been studied experimentally and its
chaotic behavior has been verified. For certain values of the control parameters C (capacitance) and f;
(driving frequency) the observed response signal is nonperiodic. Calculation of the generalized dimen-
sions shows that the system follows the quasiperiodicity route to chaos.

PACS number(s): 05.45.+b, 84.20.+m, 84.30.Ng, 85.10.Rg

INTRODUCTION

A driven negative-resistance oscillator circuit is a dissi-
pative dynamical system of a type which very often ex-
hibits chaotic behavior [1-3]. Its chaotic behavior can
be described by deterministic nonlinear differential equa-
tions [4].

Experimental work performed on electric and electron-
ic circuits has focused on the transition to chaos. Period
doubling, intermittency, and formation of strange attrac-
tors are the well studied routes to chaos [5-7]. Frequen-
cy locking and period adding are the most investigated
effects in different nonlinear circuits [8,9].

We use the Grassberger-Proccacia method [10] to mea-
sure the dimensionality of the attractor produced by a
simple experimental circuit with a nonlinear I-V charac-
teristic. The circuit examined is the classical neon bulb
RC relaxation oscillator, Fig. 1, in which van der Pol and
van der Mark first observed nonlinearity in 1927 [11].
Recently, Kennedy and Chua reexamined the same cir-
cuit and found an alternating sequence of chaotic and
periodic regimes, one of the first examples of the period-
adding route to chaos [12].

EXPERIMENTAL

A. Experimental setup

The circuit we consider, Fig. 1, is the sinusoidally
driven neon bulb relaxation oscillator, described and
studied in Refs. [11-13]. A high-voltage dc power sup-
ply E is attached to the shunt connection of a neon bulb
and to a precision variable capacitor C forming the basic
relaxation oscillator. A digital frequency generator and a
small precision resistor R, are inserted in series with the
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FIG. 1. The sinusoidally driven neon bulb relaxation oscilla-
tor.
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neon bulb. The voltage supply E, with 100 V terminal
voltage and a comparatively large output resistance R
(R=1.1 MQ) was checked for stability to avoid un-
desired ripple factor. The frequency generator acted as a
sinusoidal voltage source u; =E,coswt, while the small
resistor R(R;=60 Q) sensed the current flowing
through the neon bulb. The static resistance of the neon
bulb in the Ohmic region of its I-V characteristic was 10’
Q. All the cables used were coaxial and the experimental
setup was electromagnetically shielded to avoid external
influences, like radio frequency interference (RFI) pick-
up.
B. Measurements

The voltage wave forms both across the capacitor C
and across the resistor were measured. As explained in
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FIG. 2. The static I-V characteristic of the neon bulb.
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FIG. 3. Pulse pattern repetition rate vs C, showing the coarse
staircase structure.

Ref. [13] the measurement of the voltage drop across the
capacitor C seemed to be more advantageous, but the
wave forms monitored across the resistor R, showed
more pronounced chaotic behavior.

The measured voltages were monitored on a digital os-
cilloscope (Hameg HM-408). An IBM PC-AT was used
as an IEEE-488 controller as well as to display the results
obtained. With the signal source zeroed, the natural fre-
quency of the undriven oscillator was set to 1 kHz by
tuning capacitance C to Cy=1 nF. Then a sinusoidal sig-
nal of amplitude 8 V and frequency 1 kHz was applied.
The static I-V characteristic is shown in Fig. 2.

As the capacitance C was increased, a coarse staircase
structure, similar to that of Kennedy and Chua [12] was
obtained (Fig. 3).

Next, the capacitance was kept constant and the fre-
quency f, of the drive signal was increased. For C =30
nF, and R =100 k(}, subharmonics were observed with a
period up to 31 times the period of the drive signal. Ken-
nedy and Chua observed subharmonics only up to 20
times the period of the drive signal [12]. At high frequen-
cies there are no more subharmonics. Instead the two
signals synchronize 1:1.

DIMENSIONS AND HOMOGENEITY
OF THE ATTRACTOR

For C =1.7 nF and f;=1 kHz we obtained the signal
shown in Fig. 4. The signal seems to be nonperiodic.
The corresponding phase portrait of this signal is shown
in Fig. 5. In Fig. 6 the power spectrum of this signal is
presented. The presence of a chaotic three-banded at-
tractor, formed by the trajectories in Fig. 5, and the ex-
istence of corresponding pronounced peaks, indicated by
arrows at the frequencies f,, f,, and f in Fig. 6, clearly
indicate the nonperiodic nature of the signal of Fig. 4.
The frequencies f,, f4, and f¢have the following values:

f,=0.46 kHz, f,=1.02 kHz, and f¢=1.49 kHz .

The satellite frequencies of f,, f4, and f¢ contribute to
the dispersion and the subsequent formation of the
three-banded phase portrait in Fig. 5.
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FIG. 4. The response signal obtained for C=1.7 nF, R=1.1
MQ, and f,=1 kHz.
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FIG. 5. The phase portrait corresponding to the signal of
Fig. 4. The chaotic three-banded structure of the attractor,
formed by the trajectories, is obvious in this plot.
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FIG. 6. The power spectrum corresponding to the signal of
Fig. 4. Note the coexistence of pronounced peaks, f,, f4, and
fe, corresponding to the three-banded structure of the attractor
of Fig. 5.
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To obtain a quantitative measure of the chaos present
in the signal of Fig. 4 we followed the well-known
method of calculating the generalized dimensions D, of
our system and the corresponding f(a) spectrum. This
method [14] has already been applied in similar cases
[15-17]. The phase space is divided into hypercells with
a linear dimension /. For increasing values of /, we count
all points with mutual distances less than /, and we calcu-
late the correlation integral C%(/) via the relation [18]

. . 1 N 1 m g-1
cul) gp,. Nz} N,-zje(l Ix;—x;1) . (D

The generalized dimensions D, are connected with

CY(1) via the relation [14]
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The D,’s measure correlations between different points

of the attractor and are, therefore, useful in characteriz-
ing its inhomogeneous static structure. For ¢ =0, D, is
the ordinary fractal dimension of the attractor. For ¢
large and positive D,’s give information about the dense
regions of the attractor. For g large and negative, D,’s
give information about the sparse regions of the attrac-
tor.

Drawing C%!) vs ] in a double-logarithmic plot with ¢
as a parameter we can obtain the values

7,=InC%1)/nl , 3)

from the slope of the linear parts of the corresponding
curves for low / values. To select the correct linear parts
of these curves we have taken into account the remarks
included in Refs. [16 and 19].

The calculation of the slope InC%/)/Inl is a kind of
generating function, which can be used to determine the
function f(a) via the pair of equations [14,20]

=9,
a(q)—aq[(q D,], (4a)

fla)=qa—[q—1]D, . (4b)

Using Egs. (4) we obtain the experimental f(a) spectrum
presented by curve a in Fig. 7, from which it follows that
Dy=fma(a2)=103,D, =a,,,=1.46, and D_,_
=apnin=0.87. The theoretical f(a) curve, for the ideal
quasiperiodic transition to chaos, is presented by curve b
in the same figure.

The maximum value of the experimental f(a),D,, is
only slightly above unity and corresponds to a value of
a,a,, also very close to unity (ay=1.1). According to
Su, Rollins, and Hunt [16], this means that the f(a) spec-
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FIG. 7. f(a) curves for (a) the experimental signal of Fig. 4
and (b) the ideal quasiperiodic transition to chaos, at the same
frequency ratio 23/51.

trum, shown in Fig. 7, corresponds exactly to the transi-
tion of the system from the quasiperiodic to the chaotic
state. For subcritical orbits, the maximum value of the
f(a) spectrum should be just below unity, while for su-
percritical orbits becomes higher than unity. Since our
system is in a critical state, the deviation of the experi-
mental f(a) curve from the ideal one has to be attributed
to the existence of the third frequency observed in the
power spectrum (Fig. 6).

The form of curve a in Fig. 7, and the obtained values
of Dy, D, ,, and D_, indicate that our system shows
similar behavior to quasiperiodic systems already report-
ed in the literature [21-24].

DISCUSSION

D, is not much higher than unity, as for a quasiperiod-
ic attractor. This conclusion is corroborated by the pres-
ence of the three distinct frequencies in the power spec-
trum of Fig. 6. Furthermore, the phase portrait of Fig. 5
obviously consists only of three quasiperiodic trajectories;
each a little dispersed. One might think that the voltage
wave form shown in Fig. 4 consists only of fully periodic
signals superimposed on each other, but the simultaneous
appearance of three incommensurate frequencies is relat-
ed to the quasiperiodicity route to chaos [21,22]. Chaos
becomes noticeable in the dispersion of the quasiperiodic
trajectories on the phase plane (Fig. 5), in the broadband
background of the power spectrum (Fig. 6), in the lack of
fully developed periodicity in the signal of Fig. 4, and in
the small deviation of D, from unity.
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